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Metabolic response to injury and role of anabolic hormones
Sandra Waneka and Steven E. Wolfa,b

Purpose of review

To provide a short review of the literature describing the

hypermetabolic response to injury and potential treatments.

Associated findings include changes in inflammatory

mediators and secreted hormones.

Recent findings

Treatments should be aimed at decreasing the response

and potentially the use of anabolic agents. Of note, recent

interest in the hyperglycemic response to injury and insulin

treatment will be highlighted.

Summary

The current metabolic care of the burned patient including

nutrition is now being unfolded. It is relatively clear that

anabolic treatment should be considered in all those with

severe injury. Timing of the treatment, however, is still a

topic of discussion.
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Introduction
The past few decades have witnessed great advance-

ments in the care of severe burns. Improvements in

resuscitation management to preserve organ function

while avoiding the complications of volume overloading,

early and adequate enteral nutrition, and, most notably,

early excision of the burn wound with immediate cover-

age by autograft, allograft or synthetic skin have all

contributed to decreased morbidity and mortality. The

metabolic derangements associated with severe burn,

however, continue to be a nemesis and are an area of

intense research. Once recovered from the acute illness

phase, the hypermetabolic and catabolic state of the

patient may persist for 9 months or more [1,2]. Appreci-

ation of this metabolic response will continue to guide

further study and enable us to impact patient care in

both the acute-phase and long-term outcomes in the

severely burned.

Acute response to injury
The initial response to severe burn is mediated through a

cascade of proinflammatory cytokines, acute-phase

proteins and hormonal changes inducing a hypermeta-

bolic state (Fig. 1). Presumably, this response is an

attempt to restore homeostasis [3,4], and is characterized

by increased energy expenditure with elevated tempera-

ture [5], hyperdynamic circulation described as ‘ebb and

flow’ physiology, hyperglycemia, protein catabolism and

free fatty acid liberation from adipose tissue [6].

In response to skin injury, proinflammatory cytokines are

released by innate mechanisms as a defense to the insult.

Activated platelets and macrophages initiate this cascade

with the release of mediators from the tumor necrosis

factor and interleukin (IL) families. Tumor necrosis

factor-a, IL-6 and IL-8 were all noted to be elevated

in the plasma after severe burn [7–9]. To control a robust

proinflammatory state, antiinflammatory cytokines are

elaborated to help regulate and inhibit a potentially

excessive inflammatory and immune response. IL-4

and IL-10 [10,11], soluble tumor necrosis receptors

[12], IL-1 receptor antagonist [13], and transforming

growth factors [14] were all found to be elevated above

normal levels after burn in both the injured tissue and in

the systemic circulation, potentially leading to immuno-

suppression. Similar to proinflammatory cytokines,

excessive and prolonged elaboration of antiinflammatory

cytokines is associated with the development of sepsis

and/or death.
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Simultaneously, a hormonal response exists to the insult in

an attempt to return the patient to homeostasis. Release

of catecholamines, glucagon, prolactin, growth hormone

and cortisol are all detectable early after the injury [15]

(Fig. 2). Catecholamines appear to be the primary

mediator of the hypermetabolic response and urinary

catecholamine levels correspond to burn severity [16].

Prolactin is stimulatory to the immune system and

elevated levels after injury correlate with the extent of

burn [15]. Cortisol concentrations are also increased after

severe burn and are proportional to the degree of injury.

Plasma corticotrophin, however, was not elevated, sug-

gesting that classic endocrinologic control may not be at

play. Investigators of this response suggested that although

the cortisol findings were significant, they paled in effect in

comparison to catecholamines in the same study [17].

Hypermetabolic response
The metabolic response to severe burn typically displays

the classic ‘ebb and flow’ physiology initially described

by Moore [18]. Adequate resuscitation and nutrition is

necessary for the clinical signs of hypermetabolism to

manifest [19]. Hyperdynamic circulation with elevated

cardiac output occurs with initiation of resuscitation and

by 6–12 h will already begin to exceed preburn levels

[20]. The increased energy expenditure to cope with this

insult necessitates mobilization of large amounts of sub-

strate from fat stores and active muscle for repair and fuel,

leading to catabolism. Hyperpyrexia associated with this

response adds to the cost. Upregulation of acute-phase

proteins and a decrease in constitutive proteins leads to

the potential detriment of structure and function of

essential organs [21]. Another clinical manifestation is

hyperglycemia.

Hyperdynamic circulation and substrate cycling

In burns greater than 50% of the total body surface area,

the metabolic rate increases in proportion to the burn

wound to a maximal response of 70–75 kcal/m2/h [22].

More recent studies show a maximal response in burns as

small as 20% with further increases related to burn size

only in ambient temperatures below thermoneutrality

[23]. It also appears that increases in resting energy

expenditure are maximized at approximately 40% total

body surface area burned in the age of aggressive early

excision, where the unburned parts of the body are now

wounds associated with donor sites, thus the wound area

approaches 100% [24]. Hypermetabolism and increases in

metabolic rate are also associated with increased cardiac

output. Much of this appears to be from catecholamine

stimulation of heart rate and contractility through the

b-receptors. Catecholamine levels are highly stimulated

after severe burn [16,25] and the cardiac effects can be

beneficially limited with b-blockade [26].

Associates of hypermetabolism are increases in substrate

cycling, particularly of glucose and the fatty acids. A
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Figure 1 Schematic of the initial response to injury that results

in hypermetabolism
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Figure 2 Hypermetabolism and the endocrinologic response to injury
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substrate cycle exists when opposing, nonequilibirum

reactions catalyzed by different enzymes are operating

simultaneously, with at least one of the reactions invol-

ving the hydrolysis of ATP. Thus, a substrate cycle both

liberates heat and increases energy expenditure without

any beneficial effect. In severe burns, the total rates of

triglyceride–fatty acid and glycolytic–gluconeogenic

cycling without effective product were 450 and 250%,

respectively, over normal controls.

In conjunction with the fat cycling described above,

catecholamine and glucagon secretion are associated with

significant lipolysis of fat stores [27]. Free fatty acids are

liberated into the plasma and are efficiently removed by

the liver, as high levels are toxic to neurons. Once in the

hepatocyte, the free fatty acids are re-esterified into

triglyceride. Normally, this product is transported into

very-low-density lipoprotein particles that are excreted

from the liver and are removed from the bloodstream

primarily by lipocytes. After severe burn, however, the

formation of very-low-density lipoprotein particles in

the hepatocyte is inefficient. The triglyceride stays in

the liver to result in hepatic steatosis. Even in the face of

high carbohydrate feeding, far and away the greatest

component of re-esterified triglyceride is from the

periphery rather than de-novo synthesized fatty acid

[28]. Therefore, hepatic steatosis associated with injury

is due to fat substrate cycling from the periphery to the

liver with inefficient transport back to the periphery;

feeding with carbohydrate or fat with de-novo synthesis

of fat plays only a very minor role. For treatment, one

should consider decreasing lipolysis rather than changing

the feeding regimen.

Muscle catabolism

Accelerated net protein catabolism occurs after injury –

this protein catabolism is one of the major hormonal

responses to injury and is the most detrimental in terms

of delayed recovery. When compared to normal fasted

subjects [29], protein breakdown and subsequent efflux

of amino acids from muscle are elevated almost two-fold

after severe burn [30]. The principal defect is an accel-

erated rate of protein breakdown with a failure of com-

pensatory synthesis, resulting in a decrease in net protein

synthesis (muscle protein synthesis minus muscle protein

breakdown) [31].

Hyperpyrexia

Burn patients have an elevated core temperature 1–28C
higher than normal [32]. This is unrelated to septic

episodes or cool ambient temperatures, which will further

elevate the core temperature by increases in catechol-

amine secretion among other responses. The hyperpyr-

exia after severe burn is due to a homeostatic elevation in

the hypothalamic ‘set-point’ evidenced by the higher

ambient temperature which burn patients find com-

fortable compared to normals. The normal physiologic

response to cooler ambient temperature is by vasoregula-

tion to decrease heat loss through the skin. Burned skin

and wounds, however, lose this ability, and are charac-

terized by vasodilation bringing increased oxygen, nutri-

ents and cellular elements to the damaged tissue.

Acute-phase proteins

Under threats such as severe burn, homeostasis is upset

by a coordinated sequence of systemic changes and local

disturbances aimed at recovery. This response, termed

the acute-phase response, is realized in the liver by

increased production of many plasma proteins, known

as the acute-phase proteins, and decreased production of

constitutive proteins. We define acute-phase proteins as

those whose concentration increases in response to

inflammation and a constitutive protein as one that de-

creases. Acute-phase proteins such as C-reactive protein,

serum amyloid A, a1-acid glycoprotein, a1-antitrypsin,

fibrinogen, haptoglobin and a1-chymotrypsin are syn-

thesized exclusively in the liver, and are assumed to play

important roles in restoring normal homeostasis based on

known functions and on logical speculation about how

these might serve useful purposes. It is presumed that

upregulation of acute-phase proteins serves to stimulate

the wound-healing process and protect from damage by

hemostatic effects.

Hyperglycemia

Glucose-dependent tissues are assured an energy source

by increased hepatic gluconeogenesis and peripheral

resistance to insulin. While this is beneficial, to a point,

numerous studies showed hyperglycemia is associated

with worse outcome in intensive care unit and burned

patients associated with impaired immune function, poor

wound healing and exacerbation of protein muscle cat-

abolism [33,34]. The development of hyperglycemia

is not surprising as it is associated with dramatic increases

in gluconeogenesis and glucose substrate cycling. In

addition, insulin resistance associated with decreased

insulin signaling is present after severe burn. What is

thought to occur after severe burn is that residues on

insulin receptor substrate-1 (relatively proximal in the

signal transduction sequence) are phosphorylated, thus

rendering them the signal less robust.

Treatment of hyperglycemia generally includes exogen-

ous insulin to reach euglycemia. As mentioned above,

several studies of continuous insulin treatment in

the intensive care unit [34], including burns [35,36], have

shown benefit. These benefits appear to be due to

decreased infections as well as improved amino acid

metabolism [30,37]. Several investigators have asked

the question of whether the improvements were due

to prevention of hyperglycemia or due to pharmacologic

effects of insulin on pathways indirectly associated with
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glucose disposal. This question has not been answered to

any real effect yet and will undoubtedly be the focus of

future investigations.

Metformin as an oral hypoglycemic has been shown to

augment the effects of insulin in the severely burned.

Gore et al. [38] elegantly showed that metformin use was

associated with lower endogenous glucose production

and glucose oxidation. When given with glucose, it

improved glucose disposal, and when given with addi-

tional insulin, improved glucose uptake. In a later study,

they showed associated improvements in net muscle

protein synthesis, thus showing an anabolic effect similar

to that seen with insulin [39]. Mechanisms discussed

included improved insulin sensitivity and thus greater

insulin effects rather than direct effects on glucose trans-

porter-4 activity or effects on net protein synthesis.

Recently, the peroxisome proliferator-activated receptor-

g agonists, known as thioglitazones, have been shown to

have effects in this area. These agents have been used in

those with type II diabetes mellitus as insulin sensitizers,

thought to be effective through suppression of peripheral

lipolysis and redistribution of triglyceride stores to peri-

pheral fat. It was shown that that fenofibrate treatment

decreased serum levels of glucose and improved insulin-

stimulated glucose uptake. More studies will be required

before treatment with hypoglycemic agents in addition to

insulin can be widely adopted.

Treatment for hypermetabolism
The hypermetabolic state cannot persist indefinitely

without adversely affecting the patient’s outcome. Several

aspects of care can either attenuate or reverse this response

leading to a more anabolic state to facilitate and promote

wound healing. Ameliorating the deleterious effects of

this ongoing state is beneficial; however, reversing this

condition to an anabolic one is even more desirable. Two

strategies can be considered: (1) to decrease the res-

ponse by antagonism and (2) to stimulate anabolism

through pharmacologic means primarily through anabolic

hormones.

Antagonizing the response

A few years ago we performed a series of studies in

severely burned adults and children with the intent to

determine which clinical factors were most highly associ-

ated with increased muscle catabolism measured by net

protein balance across the leg. In this study of 123

patients, we found that catabolism was associated with

admission weight, burn size, time to excision, resting

energy expenditure and sepsis [24]. Therefore, an effec-

tive means of treatment would be prevention of associ-

ated conditions. Those which are amenable to conscien-

tious clinical treatment are time to definitive treatment

and avoidance of sepsis (also associated with early treat-

ment of the wounds). Early excision with prevention of

infection and subsequent sepsis is crucial towards mini-

mizing the full expression of the hypermetabolic

response. Modern burn care has shifted from topical

treatment of extensive burns to early excision and closure

with biologic dressings. Total excision within 48 h sig-

nificantly decreased invasive wound infections and sepsis

in pediatric patients with 40% or more total body surface

area burns [40].

Another measure that can be taken to decrease hyper-

metabolism and catabolism in severe burns is to direct

temperature regulation. As stated previously, burned

patients have a higher set point for temperature regula-

tion. Attempts to decrease temperature to normal levels

will only result in increased metabolism for heat pro-

duction until the new set point is reached, which is

typically between 38 and 38.58C. The converse is also

true, however, in that hyperpyrexia in excess of 398C is

likely associated with increased caloric expenditure that

might be controlled to spare substrate.

Stimulation of anabolism

Pharmacologic adjuncts are often utilized to convert these

catabolic patients to an anabolic state. While they may

reach this point on their own, these therapeutic interven-

tions can shorten the infirm period and improve recovery.

The adjuncts can be broken into two major classes, i.e.

soluble protein hormones and the anabolic steroids.

Soluble proteins

Growth hormone was the first agent used clinically to

ameliorate hypermetabolism after injury. As stated pre-

viously, Cuthbertson [41] used doses of growth hormone

to improve protein balance in a leg fracture model. Gore

et al. [42], using protein kinetics data measured in an

isolated limb, showed that burned adolescents given re-

combinant human growth hormone increased protein

synthesis. This study also showed that insulin, by itself,

has a similar effect. Enthusiasm for the use of growth

hormone to treat hypermetabolism was severely dimin-

ished, however, by the findings of Takala et al. [43], who

demonstrated that the use of growth hormone in critically

ill adults was associated with increased mortality.

Insulin-like growth factor can be given to produce ana-

bolism without the direct catabolic effects seen with

growth hormone. Cioffi et al. [44] gave insulin-like growth

factor-1 to burned patients, and they found a decrease in

protein oxidation and a promotion of glucose uptake

while not altering resting energy expenditure. This

study, however, was plagued by the appearance of hypo-

glycemia in some of the subjects. This effect can be

diminished by giving insulin-like growth factor-1 with its

principal binding protein insulin-like growth factor-1

binding protein-3 that retained its anabolic effect on
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leg muscle which was found mostly in those who were

most catabolic [45]. A similar effect was seen in adults

given insulin-like growth factor-1/insulin-like growth

factor-1 binding protein-3, but several of these subjects

developed peripheral neuropathies, again quelling any

enthusiasm for widespread use of this agent in this

population [46].

Insulin is a very potent anabolic agent, which has been

shown to induce improved protein and amino acid kinetics

in the severely burned [47]. The first of these studies

performed with high-doses of insulin (above 30 units/h)

given for 3–5 days showed improvements in inward trans-

port of amino acids as well as improved protein synthesis

by more than 200% [37]. Other studies with lower doses

were also effective [30]. It was also associated with

increased lean body mass and decreased length of hospital

stay without increased caloric delivery [35].

Androgenic steroids

Testosterone is the major androgenic steroid produced by

the testes of men, although a small amount is also

produced in women. Testosterone levels are extremely

diminished after severe injury [48]. When testosterone was

given to severely burned men to normalize these levels, it

was found that protein synthetic efficiency improved over

two-fold and protein breakdown decreased. The authors

concluded that testosterone could be used to ameliorate

muscle catabolism after injury [49].

Oxandrolone is an analogue of testosterone which has

been used clinically to treat muscle wasting in convales-

cing burned adults [50]. Oxandrolone is purported to

have a much greater anabolic potential than testosterone

with one-sixth of the androgenic effects [51]. All of these

studies showed that oxandrolone use is safe, and was

efficacious when given to burned adults to improve

nitrogen balance and decrease weight losses [52]. Similar

effects were seen in children [53]. When oxandrolone’s

effect on muscle protein kinetics was studied in burned

patients using stable isotopic methodology, oxandrolone

treatment was shown to improve net protein synthesis

[54]. Most recently, a multicenter trial on the use of

oxandrolone in the severely burned showed a decrease

in acute hospital stay with its use without significant side

effects. This was associated with a decreased number of

operations for wound closure [55��].

Conclusion
Severe burn is perhaps the most striking example of

hypermetabolism. The response is homogenous and thus

can be studied carefully. Investigators have shown sev-

eral associates of the effect, i.e. increases and/or decreases

in cytokine levels and increases/decreases in certain

hormones or their agents, thus all of these are associated

signals for the development of hypermetabolism. One of

the caveats of hypermetabolism is the development of

alterations in substrate metabolism, perhaps the most

difficult being muscle protein catabolism, which leaves

survivors of the injury weak and unable to participate

fully in recovery activities, even at a time when they are

most needed. Some agents have been tested in this

population which show promise, but more research needs

to be done. In particular, more attention to actual func-

tional effects should be highlighted in future studies.
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